Silva, V. P. Flambagem Lateral de Vigas de Aço Em Regime Elástico-Linear. Dissertação (mestrado) apresentada à Escola Politécnica da USP. 1992

Neste trabalho, foi deduzida a equação geral para a determinação do momento crítico à flambagem lateral de vigas com seção monossimétrica em regime elástico e analisados diversos casos particulares. Foi feita uma comparação às recomendações da Norma Brasileira (ABNT NBR 8800:1986 e normas norte-americanas AISC/LRFD/1986 e AISI/1986). Foram indicadas e comentadas as limitações no uso das expressões presentes nessas Normas. Foi incluído também um resumo dos principais resultados numéricos para uso no cálculo expedito do momento crítico em esquemas estruturais convencionais.

Lateral-torsional buckling of steel beams in elastic linear regimen

dissertacao-Valdir-1992.pdf

Leia Mais  

Gabriela Bandeira de Melo Lins de Albuquerque. Análise numérico-experimental de vigas de concreto armado com restrições axial e rotacional em situação de incêndio. 2018. Tese (Doutorado em Engenharia Civil (Engenharia de Estruturas)) - Escola Politécnica da Universidade de São Paulo,. Orientador: Valdir Pignatta e Silva.

Reinforced concrete beams are submitted to thermal deformations when exposed to fire. The lengths of the spans elongate, a fact that triggers the horizontal displacement of their supports, and they begin to bend sharply, resulting in their rotation. If these deformations are hindered by the support conditions of the element or by surrounding structural elements, for instance, additional efforts will act on the beams in order to modify their performance when facing the action of fire. Studies have pointed out that the effects of such efforts may be beneficial to the fire resistance of the beams; however, in the few researches focused on the experimental analysis of this issue, the restraints were admitted only in an isolated way, i.e., the beams were either submitted to axial or to rotational restraints. Their coupled effect, more representative of what occurs in reality, and the consideration of different stiffness levels imposed on the deformations, were evaluated in numerical investigations, without suitable experimental data for validating the results, though. In this PhD Thesis, the performance of concrete beams was evaluated experimentally by performing bending tests on full-scale elements under different support conditions: unrestrained, only with axial restraints and with both axial and rotational restraints. Regarding the restrained elements, two levels of axial and rotational stiffness were analyzed, 0.02 and 0.04EA/l; 1 and 2EJ/l. There were also reference tests on simply supported beams at ambient temperature to check the load-bearing capacities and failure modes. The experimental data obtained for different beam static schemes still motivated the conception of numerical models that would be representative of their behavior. With the aid of the DIANA software, which is based on the finite element and displacement methods, beam models to represent beams tested at ambient temperature and in fire conditions were created. These models were implemented considering several properties that characterize the nonlinear behavior of the materials and led to good correlations when their results were compared to those obtained in the laboratory. The main conclusion of this experimental and numerical study was that the fire resistance of RC beams always increases when any type of restraint (axial or axial plus rotational) is introduced. In addition, by fixing the rotational stiffness, the beams with higher axial stiffness level presented higher fire resistance than those with the lower level. The same was observed by fixing the axial stiffness and varying the rotational stiffness. Beams in which the combined effect of the restraints was admitted led to higher resistances than those with only axial restraint. For most of the studied situations, the increases of the resistances showed to be significant when confronted with the ones for unrestrained beams. Thus, it was confirmed that the standard simplified methods that allow the non-consideration of these effects during the fire design of the RC beams lead to conservative results. The numerical and experimental results presented herein may aid in the conception of alternative tools that allow applying restraint effects to design.

http://www.teses.usp.br/teses/disponiveis/3/3144/tde-29082018-085805/publico/GabrielaBandeiradeMeloLinsdeAlbuquerqueCorr18.pdf

Leia Mais